

ZXTN25020DFL 20V, SOT23, NPN low power transistor

Summary

BV_{CEX} > 100V

 $BV_{CEO} > 20V$

 $BV_{ECO} > 5V$

 $I_{C(cont)} = 2A$

 $I_{CM} = 8A$

 $V_{CE(sat)} < 70mV @ 1A$

 $R_{CE(sat)} = 55m\Omega$

 $P_{D} = 350 \text{mW}$

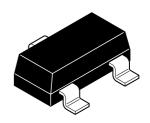
Complementary part number ZXTP25020DFL

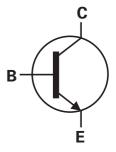
Advanced process capability has been used to achieve high current gain hold up making this device ideal for applications requiring high pulse currents.

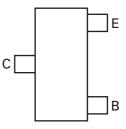
Features

- · High peak current
- · Low saturation voltage
- 100V forward blocking voltage

Applications


- · MOSFET and IGBT gate driving
- · DC-DC conversion
- · LED driving
- Interface between low voltage IC's and loads


Ordering information


Device	Reel size (inches)	Tape width (mm)	Quantity per reel
ZXTN25020DFLTA	7	8	3,000

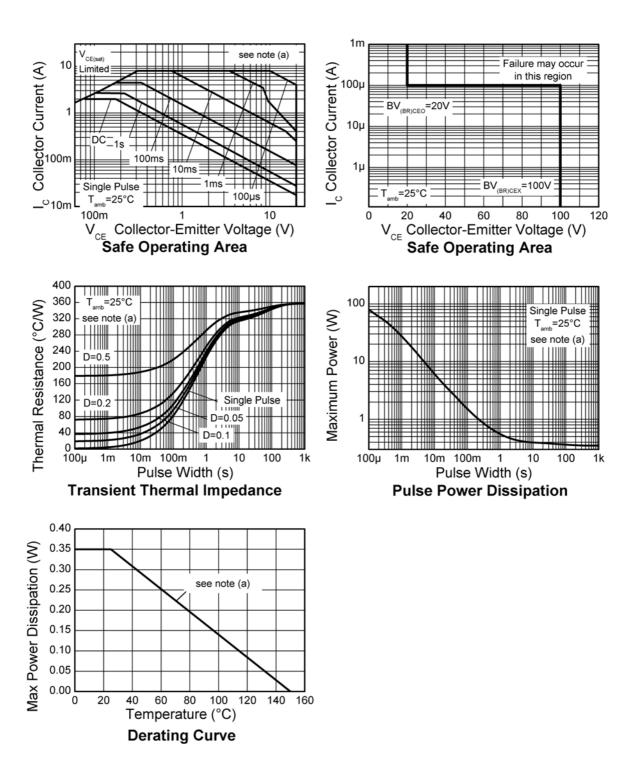
Device marking

1A1

Pinout - top view

Absolute maximum ratings

Parameter	Symbol	Limit	Unit
Collector-base voltage	V _{CBO}	100	V
Collector-emitter voltage (forward blocking)	V _{CEX}	100	V
Collector-emitter voltage	V _{CEO}	20	V
Emitter-collector voltage (reverse blocking)	V _{ECO}	5	V
Emitter-base voltage	V _{EBO}	7	V
Continuous collector current ^(a)	I _C	2	Α
Base current	I _B	500	mA
Peak pulse current	I _{CM}	8	Α
Power dissipation at T _{amb} =25°C ^(a)	P _D	350	mW
Linear derating factor		2.8	mW/°C
Operating and storage temperature range	T _j , T _{stg}	-55 to 150	°C

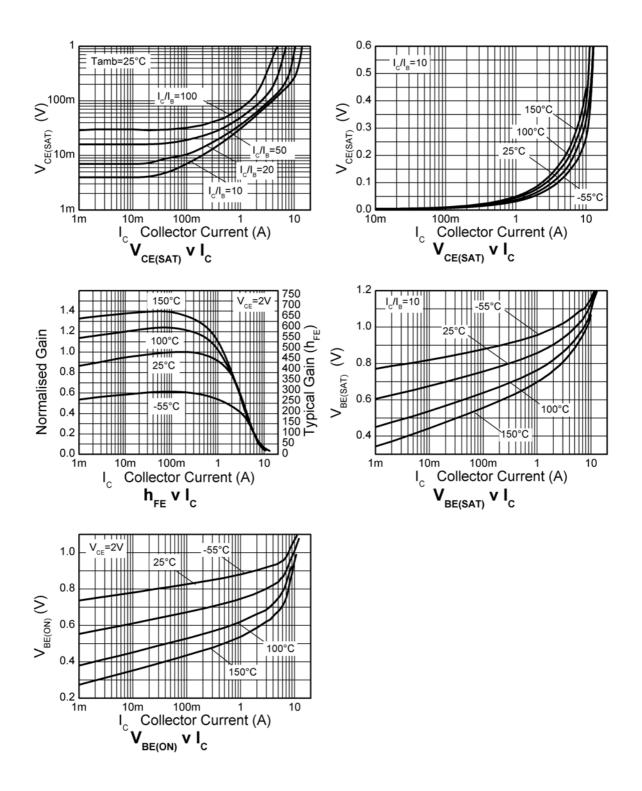

Thermal resistance

Parameter	Symbol	Limit	Unit
Junction to ambient ^(a)	$R_{\Theta JA}$	357	°C/W

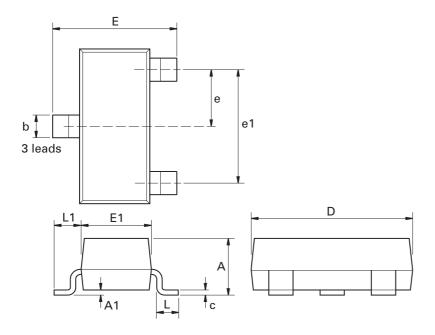
NOTES:

(a) For a device surface mounted on 25mm x 25mm x 1.6mm FR4 PCB with high coverage of single sided 1oz copper, in still air conditions.

Characteristics


Electrical characteristics (at $T_{amb} = 25$ °C unless otherwise stated)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Collector-base breakdown voltage	BV _{CBO}	100	125		V	I _C = 100μA
Collector-emitter breakdown voltage (forward blocking)	BV _{CEX}	100	120		V	$I_C = 100 \text{ A; } R_{BE} < 1 \text{k}\Omega \text{ or}$ -1V < V _{BE} < 0.25V
Collector-emitter breakdown voltage (base open)	BV _{CEO}	20	35		V	I _C = 10mA ^(*)
Emitter-collector breakdown voltage (reverse blocking)	BV _{ECX}	6	8		V	I_E = 100μA, R_{BC} < 1k Ω or 0.25V > V_{BC} > -0.25V
Emitter-collector breakdown voltage (base open)	BV _{ECO}	5	6		V	$I_E = 100 \mu A$,
Emitter-base breakdown voltage	BV _{EBO}	7	8.3		V	I _E = 100μA
Collector cut-off current	I _{CBO}		<1	50 20	nA μA	$V_{CB} = 80V$ $V_{CB} = 80V, T_{amb} = 100^{\circ}C$
Collector-emitter cut-off current	I _{CEX}		-	100	nA	$V_{CE} = 80V; R_{BE} < 1k\Omega \text{ or}$ -1V < $V_{BE} < 0.25V$
Emitter cut-off current	I _{EBO}		<1	50	nA	V _{EB} = 5.6V
Collector-emitter saturation	V _{CE(SAT)}		60	70	mV	$I_C = 1A, I_B = 100 \text{mA}^{(*)}$
voltage			85	100	mV	$I_C = 1A, I_B = 20mA^{(*)}$
			140	160	mV	$I_C = 2A$, $I_B = 40mA^{(*)}$
			180	225	mV	$I_C = 2A$, $I_B = 20mA^{(*)}$
			245	270	mV	$I_C = 4,5A, I_B = 450 \text{mA}^{(*)}$
Base-emitter saturation voltage	V _{BE(SAT)}		895	1000	mV	$I_C = 2A$, $I_B = 40mA^{(*)}$
Base-emitter turn-on voltage	V _{BE(ON)}		825	900	mV	$I_C = 2A, V_{CE} = 2V^{(*)}$
Static forward current	h _{FE}	300	450	900		$I_C = 10 \text{mA}, V_{CE} = 2V^{(*)}$
transfer ratio		220	350			$I_C = 2A, V_{CE} = 2V^{(*)}$
		80	120			$I_C = 4.5A, V_{CE} = 2V^{(*)}$
Transition frequency	f _T		215		MHz	I _C = 50mA, V _{CE} = 10V f = 100MHz
Output capacitance	C _{OBO}		16.5	25	pF	V _{CB} = 10V, f = 1MHz ^(*)
Delay time	t _(d)		67.7		ns	V _{CC} = 10V. I _C = 1A,
Rise time	t _(r)		72.2		ns	$I_{B1} = I_{B2} = 10 \text{mA}.$
Storage time	t _(s)		361		ns	
Fall time	t _(f)		63.9		ns	


NOTES:

(*) Measured under pulsed conditions. Pulse width $\leq 300 \, \mu s$; duty cycle $\leq 2\%$.

Typical characteristics

Package outline - SOT23

Dim.	Millim	neters	Inc	hes	Dim.	Millimeters		Inches	
	Min.	Max.	Min.	Max.		Min.	Max.	Мах.	Max.
Α	2.67	3.05	0.105	0.120	Н	0.33	0.51	0.013	0.020
В	1.20	1.40	0.047	0.055	K	0.01	0.10	0.0004	0.004
С	-	1.10	-	0.043	L	2.10	2.50	0.083	0.0985
D	0.37	0.53	0.015	0.021	M	0.45	0.64	0.018	0.025
F	0.085	0.15	0.0034	0.0059	N	0.95 NOM 0.0375 N		NOM	
G	1.90	NOM	0.075	NOM	-	-	-	-	-

Note: Controlling dimensions are in millimeters. Approximate dimensions are provided in inches

Zetex Semiconductors does not warrant or accept any liability whatsoeveryn respect and y parts purchased through unauthorized sales channels.

ESD (Electrostatic discharge)

Semiconductor devices are susceptible to damage by ESD. Suitable precautions should be taken when handling and transporting devices. The possible damage to devices depends on the circumstances of the handling and transporting, and the nature of the device. The extent of damage can vary from immediate functional or parametric malfunction to degradation of function or performance in use over time. Devices suspected of being affected should be replaced.

Green compliance

Zetex Semiconductors is committed to environmental excellence in all aspects of its operations which includes meeting or exceeding regulatory requirements with respect to the use of hazardous substances. Numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions.

All Zetex components are compliant with the RoHS directive, and through this it is supporting its customers in their compliance with WEEE and ELV directives.

WELL and LLV directives.				
Product status key:				
"Preview"	Future device intended for production at some point. Samples may be available			
"Active"	Product status recommended for new designs			
"Last time buy (LTB)"	Device will be discontinued and last time buy period and delivery is in effect			
"Not recommended for new d	lesigns" Device is still in production to support existing designs and production			
"Obsolete"	Production has been discontinued			
Datasheet status key:				
"Draft version"	This term denotes a very early datasheet version and contains highly provisional information, which may change in any manner without notice.			
"Provisional version"	This term denotes a pre-release datasheet. It provides a clear indication of anticipated performance. However, changes to the test conditions and specifications may occur, at any time and without notice.			
"Issue"	This term denotes an issued datasheet containing finalized specifications. However, changes to specifications may occur, at any time and without notice.			

Zetex sales offices								
Europe	Americas	Asia Pacific	Corporate Headquarters					
Zetex GmbH	Zetex Inc	Zetex (Asia Ltd)	Zetex Semiconductors plc					
Kustermann-park	700 Veterans Memorial Highway	3701-04 Metroplaza Tower 1	Zetex Technology Park, Chadderton					
Balanstraße 59	Hauppauge, NY 11788	Hing Fong Road, Kwai Fong	Oldham, OL9 9LL					
D-81541 München	USA	Hong Kong	United Kingdom					
Germany			•					
Telefon: (49) 89 45 49 49 0	Telephone: (1) 631 360 2222	Telephone: (852) 26100 611	Telephone: (44) 161 622 4444					
Fax: (49) 89 45 49 49 49	Fax: (1) 631 360 8222	Fax: (852) 24250 494	Fax: (44) 161 622 4446					

© 2007 Published by Zetex Semiconductors plc

usa.sales@zetex.com

europe.sales@zetex.com

asia.sales@zetex.com

hq@zetex.com